Learning model-free robot control by a Monte Carlo EM algorithm

dc.contributor.authorToussaint Marcen
dc.contributor.authorKontes Georgiosen
dc.contributor.authorPiperidis Savvasen
dc.contributor.authorΠιπεριδης Σαββαςel
dc.contributor.authorVlassis Nikosen
dc.date.accessioned2024-10-31T15:30:37Z
dc.date.available2024-10-31T15:30:37Z
dc.date.issued2009
dc.date.submitted2015-03-23
dc.description.abstractWe address the problem of learning robot control by model-free reinforcement learning (RL). We adopt the probabilistic model of Vlassis and Toussaint (2009) for model-free RL, and we propose a Monte Carlo EM algorithm (MCEM) for control learning that searches directly in the space of controller parameters using information obtained from randomly generated robot trajectories. MCEM is related to, and generalizes, the PoWER algorithm of Kober and Peters (2009). In the finite-horizon case MCEM reduces precisely to PoWER, but MCEM can also handle the discounted infinite-horizon case. An interesting result is that the infinite-horizon case can be viewed as a ‘randomized’ version of the finite-horizon case, in the sense that the length of each sampled trajectory is a random draw from an appropriately constructed geometric distribution. We provide some preliminary experiments demonstrating the effects of fixed (PoWER) vs randomized (MCEM) horizon length in two simulated and one real robot control tasks.en
dc.description.journalnumber27
dc.description.journalvolume2
dc.description.pagerange123-130
dc.identifier10.1007/s10514-009-9132-0
dc.identifier.citationN. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis, "Learning model-free robot control by a Monte Carlo EM algorithm," Autonomous Robots, vol. 27, no. 2, pp. 123-130, 2009.en
dc.identifier.urihttps://dspace.library.tuc.gr/handle/123456789/585
dc.language.isoen
dc.publisherSpringer Verlagen
dc.relation.isreferencedbyAutonomous Robotsen
dc.relation.replaces9205
dc.rightshttp://creativecommons.org/licenses/by/4.0/en
dc.subjectReinforcement learningen
dc.titleLearning model-free robot control by a Monte Carlo EM algorithmen
dc.typePeer-Reviewed Journal Publicationen
dc.typeΔημοσίευση σε Περιοδικό με Κριτέςel
dspace.entity.typePublication

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Δεν υπάρχει διαθέσιμη μικρογραφία
Ονομα:
Vlassis_et_al_Autonomous_Robots_27_2009.pdf
Μέγεθος:
751.76 KB
Μορφότυπο:
Adobe Portable Document Format