Long-term prediction of temperature data for the assessment of future trends of the building heating and cooling loads

dc.contributor.advisorKolokotsa Dionysiaen
dc.contributor.advisorΚολοκοτσα Διονυσιαel
dc.contributor.authorGeorgatou Christinaen
dc.contributor.authorΓεωργατου Χριστιναel
dc.contributor.committeememberNikolaidis Nikolaosen
dc.contributor.committeememberΝικολαιδης Νικολαοςel
dc.contributor.committeememberKalaitzakis Kostasen
dc.contributor.committeememberΚαλαϊτζακης Κωσταςel
dc.date.accessioned2024-10-31T15:31:34Z
dc.date.available2024-10-31T15:31:34Z
dc.date.issued2015
dc.date.submitted2015-07-03
dc.description.abstractThe present work focuses on the long term prediction of temperature data employing neural network models. Primarily, a benchmarking auto regressive model is developed. Then, different neural networks are developed regarding the network type, the training function and the training intervals. Temperature predictions are calculated for ten and for five year intervals. Each model’s results are compared with the corresponding real temperature data, in terms of mean, maximum and minimum temperature values, cooling degree days and frequency distribution. The best predicted temperature data are used as outdoor temperature for the heating and cooling loads calculations of a typical office building. The building simulation model which is used for the energy demand calculations is the open source ESP-r model. The results indicate a relative accurate potential of the neural networks for the simulation of the mean temperature data and prediction of the cooling degree days. Regarding the high temperature values and the maximum peaks, the neural network models are unable to reach precise values, due to the lack of similar training data. As a result, the cooling loads calculated from neural network predictions are underestimated, while the heating loads prediction is more accurate.en
dc.format.extent3,08 megabytesen
dc.identifier10.26233/heallink.tuc.26897
dc.identifier.citationΧριστίνα Γεωργάτου, "Long-term prediction of temperature data for the assessment of future trends of the building heating and cooling loads", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2015el
dc.identifier.citationChristina Georgatou, "Long-term prediction of temperature data for the assessment of future trends of the building heating and cooling loads", Master Thesis, School of Environmental Engineering, Technical University of Crete, Chania, Greece, 2015en
dc.identifier.urihttps://dspace.library.tuc.gr/handle/123456789/596
dc.language.isoen
dc.publisherTechnical University of Creteen
dc.publisherΠολυτεχνείο Κρήτηςel
dc.relation.replaces9833
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/en
dc.subjectConsumption of energyen
dc.subjectEnergy efficiencyen
dc.subjectFuel consumptionen
dc.subjectFuel efficiencyen
dc.subjectenergy consumptionen
dc.subjectconsumption of energyen
dc.subjectenergy efficiencyen
dc.subjectfuel consumptionen
dc.subjectfuel efficiencyen
dc.subjectBIM (Building information modeling)en
dc.subjectbuilding information modelingen
dc.subjectbim building information modelingen
dc.subjectArtificial neural networksen
dc.subjectNets, Neural (Computer science)en
dc.subjectNetworks, Neural (Computer science)en
dc.subjectNeural nets (Computer science)en
dc.subjectneural networks computer scienceen
dc.subjectartificial neural networksen
dc.subjectnets neural computer scienceen
dc.subjectnetworks neural computer scienceen
dc.subjectneural nets computer scienceen
dc.subjectArma modelsen
dc.subjectBuildings--Heating and ventilationen
dc.subjectheatingen
dc.subjectbuildings heating and ventilationen
dc.titleLong-term prediction of temperature data for the assessment of future trends of the building heating and cooling loadsen
dc.typeΜεταπτυχιακή Διατριβήel
dc.typeMaster Thesisen
dcterms.mediatorTechnical University of Crete::School of Environmental Engineeringen
dcterms.mediatorΠολυτεχνείο Κρήτης::Σχολή Μηχανικών Περιβάλλοντοςel
dspace.entity.typePublication

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Δεν υπάρχει διαθέσιμη μικρογραφία
Ονομα:
Georgatou_Christina_MSc_2015.pdf
Μέγεθος:
2.9 MB
Μορφότυπο:
Adobe Portable Document Format