Δίκτυα έκϕρασης για γονιδιακούς δείκτες καρκίνου

Δεν υπάρχει διαθέσιμη μικρογραφία

Ημερομηνία

2015

Συγγραφείς

Chalepakis-Ntellis Dimitrios-Apostolos
Χαλεπακης-Ντελλης Δημητριος-Αποστολος

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Πολυτεχνείο Κρήτης

Περίληψη

Τα κύτταρα περιέχουν χιλιάδες βιολογικά μόρια, όπως γονίδια, RNA, πρωτεΐνες και μεταβολίτες, που αλληλεπιδρούν με πολύπλοκους τρόπους. Τα δίκτυα παρουσιάζουν ένα ισχυρό πλαίσιο για να αντιπροσωπεύσουν αυτές τις περίπλοκες σχέσεις και αλληλεπιδράσεις, οι οποίες είναι υπεύθυνες για διάϕορες κυτταρικές λειτουργίες με τις επιδράσεις των μεμονωμένων κόμβων των μορίων. Στην παρούσα διπλωματική εργασία πραγματοποιείται η εκμάθηση δομής Bayesian δικτύων από δεδομένα γονιδιακής έκϕρασης που προέρχονται από δείγματα παθολογίας του καρκίνου του μαστού. Τα Bayesian δίκτυα παρέχουν μια καλή και εύχρηστη αναπαράσταση για την έκϕραση της από κοινού κατανομής πιθανότητας και για τον συμπερασμό. Η αναπαράσταση και η χρήση της θεωρίας πιθανοτήτων κάνουν τα Bayesian δίκτυα κατάλληλα για το συνδυασμό του πεδίου γνώσης και δεδομένων, την έκϕραση αιτιωδών σχέσεων, την αποϕυγή υπερκάλυψης ενός μοντέλου σε δεδομένα εκπαίδευσης, και την εκμάθηση από μη ολοκληρωμένα σύνολα δεδομένων. Συγκεκριμένα, για να γίνει η εκμάθηση μιας τέτοιας δομής, χρησιμοποιήθηκαν οι αλληλεπιδράσεις των 77 γονιδίων που είναι μια γονιδιακή υπογραϕή που σχετίζεται με την παθολογία του καρκίνου του μαστού. Κατασκευάστηκαν δομές ξεχωριστά για τα καρκινικά και τα υγιή δείγματα ενώ η εκμάθηση των δομών έγινε σύμϕωνα με τον αλγόριθμο εκμάθησης δομής Κ2, θεωρώντας τις μεταβλητές διακριτές αλλά και συνεχείς. Οι δομές που προέκυψαν μελετήθηκαν ως προς τις ιδιότητες Μικρού Κόσμου και Ελεύθερης Κλίμακας, που εμϕανίζονται στην πλειονότητα των δικτύων του πραγματικού κόσμου. Επίσης αναζητήθηκαν σημαντικοί κόμβοι, συμπλέγματα (σύμϕωνα με τον αλγόριθμο MCODE) και δομικές ενότητες (σύμϕωνα με τον αλγόριθμο jActiveModules) στις δομές, τα οποία αξιολογήθηκαν στατιστικά και βιολογικά. Η στατιστική ανάλυση των δικτύων έδειξε ότι εμϕανίζουν την ιδιότητα Ελεύθερης Κλίμακας που συνάδει με τη βιολογική τους διάσταση όπως επίσης και ότι υπάρχουν σημαντικοί κόμβοι, συμπλέγματα και δομικές ενότητες στα δίκτυα. Η ανάλυση των Bayesian δικτύων ανέδειξε δυναμικά υποδίκτυα με κεντρικούς κόμβους τα οποία προσϕέρουν νέα γνώση σχετικά με τα βιολογικά μονοπάτια που εμπλέκονται στον καρκίνο του μαστού.

Περιγραφή

Μια εργασία που υποβλήθηκε για τη κάλυψη των αναγκών απόκτησης της Διπλώματος στη σχολή ΗΜΜΥ

Λέξεις-κλειδιά

Bayes' solution, Bayesian analysis, bayesian statistical decision theory, bayes solution, bayesian analysis, Bayesian networks, Gene markers, Gene analysis, Scale-free networks

Παραπομπή

Δημήτριος-Απόστολος Χαλεπάκης-Ντελλής, "Δίκτυα Έκϕρασης για Γονιδιακούς Δείκτες Καρκίνου", Διπλωματική Εργασία, Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2015

Έχει διάδοχο το τεκμήριο

Είναι διάδοχο του τεκμηρίου

Περιέχει το τεκμήριο

Είναι μέρος του τεκμηρίου

Αναφέρει το τεκμήριο

Αναφέρεται από το τεκμήριο

Έπεται το τεκμήριο

Προηγείται του τεκμηρίου

Έχει ως έκδοση το τεκμήριο

Αποτελεί έκδοση του τεκμηρίου

Έχει ως συμπληρωματικό το τεκμήριο

Είναι συμπληρωματικό του τεκμηρίου

Έχει μετατραπει στο τεκμήριο

Αποτελεί μετατροπή του τεκμηρίου