Development of optimization algorithms for a smart grid community

dc.contributor.advisorKolokotsa Dionysiaen
dc.contributor.advisorΚολοκοτσα Διονυσιαel
dc.contributor.authorProvata Elenien
dc.contributor.authorΠροβατα Ελενηel
dc.contributor.committeememberKalaitzakis Konstantinosen
dc.contributor.committeememberΚαλαϊτζακης Κωνσταντινοςel
dc.contributor.committeememberKaratzas Giorgosen
dc.contributor.committeememberΚαρατζας Γιωργοςel
dc.date.accessioned2024-10-31T16:14:38Z
dc.date.available2024-10-31T16:14:38Z
dc.date.issued2014
dc.date.submitted2014-12-15
dc.description.abstractThe aim of this work is the development of an optimization model in order to minimize the cost of Leaf Community microgrid. This cost is a sum of energy cost and the maintenance cost of the Energy storage system. The developed objective function is constrained and the problem here is solved by using the method of genetic algorithms at Matlab. The genetic algorithm decides about the transportation of the energy from or to the ESS and it calculates an optimum cost. The optimization time horizon is 24 h ahead, thus the prediction of energy production and consumption was necessary. This was achieved by using neural networks. In order to verify the performance of the developed optimization model, some scenarios were tested evaluated. This study concludes that a management of a microgrid can achieve energy and money savings.en
dc.format.extent111 pagesen
dc.identifier10.26233/heallink.tuc.23781
dc.identifier.citationEleni Provata, "Development of optimization algorithms for a smart grid community", Master Thesis, School of Environmental Engineering, Technical University of Crete, Chania, Greece, 2014en
dc.identifier.citationΕλένη Προβατά, "Development of optimization algorithms for a smart grid community", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2014el
dc.identifier.urihttps://dspace.library.tuc.gr/handle/123456789/1070
dc.language.isoen
dc.publisherTechnical University of Creteen
dc.publisherΠολυτεχνείο Κρήτηςel
dc.relation.replaces8785
dc.rightshttp://creativecommons.org/licenses/by/4.0/en
dc.subjectGreen energy investmenten
dc.subjectInvestment in clean energyen
dc.subjectclean energy investmenten
dc.subjectgreen energy investmenten
dc.subjectinvestment in clean energyen
dc.subjectOptimization, Constraineden
dc.subjectconstrained optimizationen
dc.subjectoptimization constraineden
dc.subjectIndustrial energy consumptionen
dc.subjectindustries energy consumptionen
dc.subjectindustrial energy consumptionen
dc.subjectArtificial neural networksen
dc.subjectNets, Neural (Computer science)en
dc.subjectNetworks, Neural (Computer science)en
dc.subjectNeural nets (Computer science)en
dc.subjectneural networks computer scienceen
dc.subjectartificial neural networksen
dc.subjectnets neural computer scienceen
dc.subjectnetworks neural computer scienceen
dc.subjectneural nets computer scienceen
dc.subjectAlternate energy sourcesen
dc.subjectAlternative energy sourcesen
dc.subjectEnergy sources, Renewableen
dc.subjectRenewable energy resourcesen
dc.subjectSustainable energy sourcesen
dc.subjectrenewable energy sourcesen
dc.subjectalternate energy sourcesen
dc.subjectalternative energy sourcesen
dc.subjectenergy sources renewableen
dc.subjectrenewable energy resourcesen
dc.subjectsustainable energy sourcesen
dc.titleDevelopment of optimization algorithms for a smart grid communityen
dc.typeΜεταπτυχιακή Διατριβήel
dc.typeMaster Thesisen
dcterms.mediatorTechnical University of Crete::School of Environmental Engineeringen
dcterms.mediatorΠολυτεχνείο Κρήτης::Σχολή Μηχανικών Περιβάλλοντοςel
dspace.entity.typePublication

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Δεν υπάρχει διαθέσιμη μικρογραφία
Ονομα:
Provata_Eleni_MSc_2014.pdf
Μέγεθος:
3.14 MB
Μορφότυπο:
Adobe Portable Document Format