BucDoop: Bottom Up Computation of Iceberg Data Cubes
with Hadoop
dc.contributor.advisor | Deligiannakis Antonios | en |
dc.contributor.advisor | Δεληγιαννακης Αντωνιος | el |
dc.contributor.author | Tsakonas Konstantinos | en |
dc.contributor.author | Τσακωνας Κωνσταντινος | el |
dc.contributor.committeemember | Garofalakis Minos | en |
dc.contributor.committeemember | Γαροφαλακης Μινως | el |
dc.contributor.committeemember | Christodoulakis Stavros | en |
dc.contributor.committeemember | Χριστοδουλακης Σταυρος | el |
dc.date.accessioned | 2024-10-31T15:00:42Z | |
dc.date.available | 2024-10-31T15:00:42Z | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-09-26 | |
dc.description | BucDoop: Bottom Up Computation of Iceberg Data Cubes With Hadoop | en |
dc.description.abstract | Big Data analysis has been a key matter during the recent years for the study of various phenomena in various science contexts as well as in business intelligence. Furthermore it appears for good reason to remain in focus for the future. Online Analytical processing methods and Data Cubes need to be further studied in order to reduce time used for efficient data analysis. This study introduces BucDoop, a novel algorithm that exploits the parallelism benefits of Hadoop Map Reduce, for the efficient iceberg data cube creation in reasonable time. BucDoop includes the use of the Bottom Up Computation (BUC) idea in the context of iceberg cube data lattice traversal, managing to reduce the amount of data handled with early pruning architecture and producing the portion of the cube needed for analysis purposes (iceberg problem). Experiments conducted herein present an efficient scalability factor for the creation of the iceberg cube for very big data, by-passing the data explosion and memory constraints problem while using only commodity hardware. | en |
dc.format.extent | 1.9 megabytes | en |
dc.identifier | 10.26233/heallink.tuc.21971 | |
dc.identifier.citation | Konstantinos Tsakonas, "BucDoop: Bottom Up Computation of Iceberg Data Cubes with Hadoop", Master Thesis, School of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, 2014 | en |
dc.identifier.citation | Κωνσταντίνος Τσάκωνας, "BucDoop: Bottom Up Computation of Iceberg Data Cubes with Hadoop", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2014 | el |
dc.identifier.uri | https://dspace.library.tuc.gr/handle/123456789/252 | |
dc.language.iso | en | |
dc.publisher | Πολυτεχνείο Κρήτης | el |
dc.publisher | Technical University of Crete | el |
dc.relation.replaces | 7821 | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Algorithmic knowledge discovery | en |
dc.subject | Factual data analysis | en |
dc.subject | KDD (Information retrieval) | en |
dc.subject | Knowledge discovery in data | en |
dc.subject | Knowledge discovery in databases | en |
dc.subject | Mining, Data | en |
dc.subject | data mining | en |
dc.subject | algorithmic knowledge discovery | en |
dc.subject | factual data analysis | en |
dc.subject | kdd information retrieval | en |
dc.subject | knowledge discovery in data | en |
dc.subject | knowledge discovery in databases | en |
dc.subject | mining data | en |
dc.subject | Online Analytical Processing technology | en |
dc.subject | olap technology | en |
dc.subject | online analytical processing technology | en |
dc.subject | Map reduce | en |
dc.subject | Hadoop | en |
dc.subject | Bottom Up Computation | en |
dc.subject | Data aggregation | en |
dc.subject | Iceberg cube | en |
dc.subject | Data cube | en |
dc.title | BucDoop: Bottom Up Computation of Iceberg Data Cubes with Hadoop | en |
dc.type | Μεταπτυχιακή Διατριβή | el |
dc.type | Master Thesis | en |
dcterms.mediator | Technical University of Crete::School of Electronic and Computer Engineering | en |
dcterms.mediator | Πολυτεχνείο Κρήτης::Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών | el |
dspace.entity.type | Publication |
Αρχεία
Πρωτότυπος φάκελος/πακέτο
1 - 1 από 1
Δεν υπάρχει διαθέσιμη μικρογραφία
- Ονομα:
- Tsakonas_Konstantinos_MSc_2014.pdf
- Μέγεθος:
- 1.84 MB
- Μορφότυπο:
- Adobe Portable Document Format