Crowdsourcing and management of nature observational data

dc.contributor.advisorChristodoulakis Stavrosen
dc.contributor.advisorΧριστοδουλακης Σταυροςel
dc.contributor.authorSkevakis Giannisen
dc.contributor.authorΣκευακης Γιαννηςel
dc.contributor.committeememberMania Aikaterinien
dc.contributor.committeememberΜανια Αικατερινηel
dc.contributor.committeememberDeligiannakis Antoniosen
dc.contributor.committeememberΔεληγιαννακης Αντωνιοςel
dc.date.accessioned2024-10-31T15:07:29Z
dc.date.available2024-10-31T15:07:29Z
dc.date.issued2014
dc.date.submitted2014-10-17
dc.description.abstractObservations of plants and animals in nature is highly valued information for the experts in the area of biodiversity. They can be used to define changes in the population of animals, plants, or track their movements throughout long periods of time. Moreover, the richer the information following the observations, the more knowledge can be extracted from them. However, the limited number of experts and the limited funding in the area, makes the observation gathering procedure almost impossible. We present the design and implementation of a framework for the management of bio- diversity observations captured by users roaming in the nature. This aims to alleviate the need for experts capturing biodiversity information, and propagates the collection of information to simple users wandering in the nature. Our framework consists of a model supporting the observations, and an infrastructure that allows the capturing, enrichment and storage of the observations using state- of-the-art technologies. Our architecture provides a scalable, highly efficient management of the collected data. The collection of the observational data is performed in real-time using mobile de- vices that most of the people have available with them, like mobile phones and tablets. Additionally, we describe the meta-model that we have defined, allowing the personalization of the metadata that follow the observations. This provides our framework with the freedom and extensibility needed so as to be implemented for various domains other than biodiversity. Finally, we describe the process of migrating the data collected by the Natural Europe project to our infrastructure.en
dc.format.extent195 pagesen
dc.identifier10.26233/heallink.tuc.17791
dc.identifier.citationGiannis Skevakis, "Crowdsourcing and management of nature observational data", Master Thesis, School of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, 2014en
dc.identifier.urihttps://dspace.library.tuc.gr/handle/123456789/331
dc.language.isoen
dc.publisherΠολυτεχνείο Κρήτηςel
dc.publisherTechnical University of Creteen
dc.relation.replaces5321
dc.rightshttp://creativecommons.org/licenses/by/4.0/en
dc.subjectWeb user interfacesen
dc.subjectWUIs (Web-based user interfaces)en
dc.subjectWUIs (Web user interfaces)en
dc.subjectweb based user interfacesen
dc.subjectweb user interfacesen
dc.subjectwuis web based user interfacesen
dc.subjectwuis web user interfacesen
dc.subjectLBS (Information services)en
dc.subjectLocation-based computingen
dc.subjectMobile location servicesen
dc.subjectTelegeoinformaticsen
dc.subjectlocation based servicesen
dc.subjectlbs information servicesen
dc.subjectlocation based computingen
dc.subjectmobile location servicesen
dc.subjecttelegeoinformaticsen
dc.subjectHistory, Naturalen
dc.subjectNatural scienceen
dc.subjectPhysiophilosophyen
dc.subjectnatural historyen
dc.subjecthistory naturalen
dc.subjectnatural scienceen
dc.subjectphysiophilosophyen
dc.titleCrowdsourcing and management of nature observational dataen
dc.typeΜεταπτυχιακή Διατριβήel
dc.typeMaster Thesisen
dcterms.mediatorTechnical University of Crete::School of Electronic and Computer Engineeringen
dcterms.mediatorΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστώνel
dspace.entity.typePublication

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Δεν υπάρχει διαθέσιμη μικρογραφία
Ονομα:
Skevakis_Giannis_MSc_2014.pdf
Μέγεθος:
18.62 MB
Μορφότυπο:
Adobe Portable Document Format