Spartan gibbs random field models for geostatistical applications

dc.contributor.authorD.T. Hristopulosen
dc.date.accessioned2024-10-31T14:57:52Z
dc.date.available2024-10-31T14:57:52Z
dc.date.issued2003
dc.date.submitted2015-09-25
dc.description.abstractThe inverse problem of determining the spatial dependence of random fields from an experimental sample is a central issue in Geostatistics. We propose a computationally efficient approach based on Spartan Gibbs random fields. Their probability density function is determined by a small set of parameters, which can be estimated by enforcing sample-based constraints on the stochastic moments. The computational complexity of calculating the constraints increases linearly with the sample size. We investigate a specific Gibbs probability density with spatial dependence derived from generalized gradient and Laplacian operators, and we derive permissibility conditions for the model parameters.en
dc.description.journalnumber6
dc.description.journalvolume24
dc.description.pagerange2125-2162
dc.format.extent37 pagesen
dc.identifier10.1137/S106482750240265X
dc.identifier.citationD.T. Hristopulos," Spartan gibbs random field models for geostatistical applications ", J. on Sc. Comput., vol. 24 ,no. 6, pp. 2125-2162,2003. doi:10.1137/S106482750240265Xen
dc.identifier.urihttps://dspace.library.tuc.gr/handle/123456789/216
dc.language.isoen
dc.publisherSIAMen
dc.relation.isreferencedbySIAM Journal on Scientific Computingen
dc.relation.replaces11974
dc.rightshttp://creativecommons.org/licenses/by/4.0/en
dc.subjectGreek mathematicsen
dc.subjectmathematics greeken
dc.subjectgreek mathematicsen
dc.titleSpartan gibbs random field models for geostatistical applicationsen
dc.typePeer-Reviewed Journal Publicationen
dc.typeΔημοσίευση σε Περιοδικό με Κριτέςel
dspace.entity.typePublication

Αρχεία