Maximally sparse convex estimation and equalization

dc.contributor.advisorLiavas Athanasiosen
dc.contributor.advisorΛιαβας Αθανασιοςel
dc.contributor.authorLourakis Georgiosen
dc.contributor.authorΛουρακης Γεωργιοςel
dc.contributor.committeememberDigalakis Vasilisen
dc.contributor.committeememberΔιγαλακης Βασιληςel
dc.contributor.committeememberBletsas Aggelosen
dc.contributor.committeememberΜπλετσας Αγγελοςel
dc.date.accessioned2024-10-31T15:36:08Z
dc.date.available2024-10-31T15:36:08Z
dc.date.issued2014
dc.date.submitted2014-10-06
dc.description.abstractSparse multipath channels are wireless links commonly found in communication systems such as High Frequency radio channels, horizontal and vertical underwater acoustic channels and terrestrial broadcasting channels for High Definition Television. Their impulse responses are characterized by a few significant terms that are widely separated in time. With high speed transmission, the length of a sampled sparse channel can reach hundreds of symbol interval. Thus, the amount of Intersymbol Interference (ISI) at the receiver is very high. Consequently, the presence of an ISI mitigating structure at the receiver, such as the Decision Feedback Equalizer (DFE) is essential. Due to the sparse impulse responses of these channels, traditional estimation techniques such as Least Squares (LS) result in over-parameterization and thus poor performance of the estimator. Also, classical equalizers become too complex for tackling these channels. The problem of estimating and equalizing sparse multipath channels is considered in this thesis. We formulate the sparse channel estimation and the computation of the sparse DFE filters as sparse approximation problems. A usual approach in sparse approximation problems is regularization with an l_1 norm penalty term and usage of convex optimization techniques in order to acquire a solution. Other sparsity promoting penalty functions are available, but the l_1 norm has the advantage to be a convex function, making the l_1 norm regularized approximation problem a convex one. When a problem is formulated as a convex optimization problem, it can be solved by very fast, efficient and reliable algorithms. In order to achieve sparser solutions and still gain from the benefits of the convex optimization theory, the Maximally Sparse Convex (MSC) algorithm utilizes a non-convex regularization term, that promotes sparsity more strongly than the l_1 norm, but chosen such that the total cost function remains convex.en
dc.format.extent78 pagesen
dc.identifier10.26233/heallink.tuc.22834
dc.identifier.citationGeorgios Lourakis, "Maximally sparse convex estimation and equalization", Diploma Work, School of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, 2014en
dc.identifier.citationΓεώργιος Λουράκης, "Maximally sparse convex estimation and equalization", Διπλωματική Εργασία, Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2014el
dc.identifier.urihttps://dspace.library.tuc.gr/handle/123456789/648
dc.language.isoen
dc.publisherΠολυτεχνείο Κρήτηςel
dc.publisherTechnical University of Creteen
dc.relation.replaces8341
dc.rightshttp://creativecommons.org/licenses/by/4.0/en
dc.subjectConvex optimizationen
dc.subjectCommunication systems, Wirelessen
dc.subjectWireless data communication systemsen
dc.subjectWireless information networksen
dc.subjectWireless telecommunication systemsen
dc.subjectwireless communication systemsen
dc.subjectcommunication systems wirelessen
dc.subjectwireless data communication systemsen
dc.subjectwireless information networksen
dc.subjectwireless telecommunication systemsen
dc.titleMaximally sparse convex estimation and equalizationen
dc.typeΔιπλωματική Εργασίαel
dc.typeDiploma Worken
dcterms.mediatorTechnical University of Crete::School of Electronic and Computer Engineeringen
dcterms.mediatorΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστώνel
dspace.entity.typePublication

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Δεν υπάρχει διαθέσιμη μικρογραφία
Ονομα:
Lourakis_Georgios_Dip_2014.pdf
Μέγεθος:
1.66 MB
Μορφότυπο:
Adobe Portable Document Format