Environmental time series interpolation based on spartan random processes

dc.contributor.authorD.T. Hristopulosen
dc.contributor.authorM. Zukovicen
dc.date.accessioned2024-10-31T14:57:54Z
dc.date.available2024-10-31T14:57:54Z
dc.date.issued2008
dc.date.submitted2015-09-26
dc.description.abstractIn many environmental applications, time series are either incomplete or irregularly spaced. We investigate the application of the Spartan random process to missing data prediction. We employ a novel modified method of moments (MMoM) for parameter inference. The CPU time of MMoM is shown to be much faster than that of maximum likelihood estimation and almost independent of the data size. We formulate an explicit Spartan interpolator for estimating missing data. The model validation is performed on both synthetic data and real time series of atmospheric aerosol concentrations. The prediction performance is shown to be comparable with that attained by the best linear unbiased (Kolmogorov-Wiener) predictor at reduced computational cost.en
dc.description.journalnumber33
dc.description.journalvolume42
dc.description.pagerange7669-7678
dc.format.extent9 pagesen
dc.identifier10.1016/j.atmosenv.2008.05.062
dc.identifier.citationM. Zukovic ,D.T. Hristopulos," Environmental time series interpolation based on spartan random processes ", Atm. Env., vol.42 , no. 3),pp. 7669-7678,2008.doi: 10.1016/j.atmosenv.2008.05.062en
dc.identifier.urihttps://dspace.library.tuc.gr/handle/123456789/217
dc.language.isoen
dc.relation.isreferencedbyAtmospheric Environmentel
dc.relation.replaces12001
dc.rightshttp://creativecommons.org/licenses/by/4.0/en
dc.titleEnvironmental time series interpolation based on spartan random processesen
dc.typePeer-Reviewed Journal Publicationen
dc.typeΔημοσίευση σε Περιοδικό με Κριτέςel
dspace.entity.typePublication

Αρχεία