Regularized optimization applied to clustering and joint estimation of multiple undirected graphical models

Δεν υπάρχει διαθέσιμη μικρογραφία

Ημερομηνία

2014

Συγγραφείς

Georgogiannis Alexandros
Γεωργογιαννης Αλεξανδρος

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Πολυτεχνείο Κρήτης

Περίληψη

Since its earliest days as a discipline, machine learning has made use of optimization formulations and algorithms. Likewise, machine learning has contributed to optimization, driving the develop- ment of new optimization approaches that address the significant challenges presented by machine learning applications. This influence continues to deepen, producing a growing literature at the intersection of the two fields while attracting leading researchers to the effort. While techniques proposed twenty years ago continue to be refined, the increased complexity, size, and variety of today’s machine learning models demand a principled reassessment of existing assumptions and techniques. This thesis makes a small step toward such a reassessment. It describes novel contexts of established frameworks such as convex relaxation, splitting methods, and regularized estimation and how we can use them to solve significant problems in data mining and statistical learning. The thesis is organised in two parts. In the first part, we present a new clustering algorithm. The task of clustering aims at discovering structures in data. This algorithm is an extension of recently proposed convex relaxations of k-means and hierarchical clustering. In the second part, we present a new algorithm for discovering dependencies among common variables in multiple undirected graphical models. Graphical models are useful for the description and modelling of multivariate systems. In the appendix, we comment on a core problem underlying the whole study and we give an alternative solution based on recent advances in convex optimization.

Περιγραφή

Submitted to the School of Electronic and Computer Engineering in partial fulfillment of the requirements for the Master of Science degree

Λέξεις-κλειδιά

Optimization (Mathematics), Optimization techniques, Optimization theory, Systems optimization, mathematical optimization, optimization mathematics, optimization techniques, optimization theory, systems optimization, Learning, Machine, machine learning, learning machine

Παραπομπή

Alexandros Georgogiannis, "Regularized optimization applied to clustering and joint estimation of multiple undirected graphical models", Master Thesis, School of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, 2014

Έχει διάδοχο το τεκμήριο

Είναι διάδοχο του τεκμηρίου

Περιέχει το τεκμήριο

Είναι μέρος του τεκμηρίου

Αναφέρει το τεκμήριο

Αναφέρεται από το τεκμήριο

Έπεται το τεκμήριο

Προηγείται του τεκμηρίου

Έχει ως έκδοση το τεκμήριο

Αποτελεί έκδοση του τεκμηρίου

Έχει ως συμπληρωματικό το τεκμήριο

Είναι συμπληρωματικό του τεκμηρίου

Έχει μετατραπει στο τεκμήριο

Αποτελεί μετατροπή του τεκμηρίου