Smart sensors of RF and backscatter signals with localization

dc.contributor.advisorBletsas Aggelosen
dc.contributor.advisorΜπλετσας Αγγελοςel
dc.contributor.authorAlimpertis Emmanouilen
dc.contributor.authorΑλιμπερτης Εμμανουηλel
dc.contributor.committeememberKarystinos Georgiosen
dc.contributor.committeememberΚαρυστινος Γεωργιοςel
dc.contributor.committeememberLagoudakis Michaelen
dc.contributor.committeememberΛαγουδακης Μιχαηλel
dc.date.accessioned2024-10-31T16:12:34Z
dc.date.available2024-10-31T16:12:34Z
dc.date.issued2014
dc.date.submitted2014-10-14
dc.descriptionMaster Thesisel
dc.description.abstractInformation may be more valuable when the location of its source is known. This thesis develops localization algorithms based on received signal strength (RSS) measurements for unknown radio frequency (RF) sources and bistatic scatter radio tags (sensors). This thesis demonstrates RF source location es- timation utilizing RSS measurements by a community of smartphone users, within 800m (or more) from the source. The location estimation algorithm incorporates careful modeling of the time-varying source transmission power, source antenna directionality (even with a single 4-parameter model) and different path loss exponents among the various source-user links. More im- portantly, a vast number of measurements is collected and exploited through an automated community of smartphones. Location estimation error on the order of 50m is achieved, even when users are within 800m or more from the RF source. Furthermore, multiple input single output RSS localization for bistatic scatter radio is also considered. The RF scatter radio tag is illuminated by multiple low-cost carrier emitters, operating consecutively. Experimental validation of the proposed algorithm reports localization error on the order of 3m for tag and emitters placed at an area of 70m x 70m. Both estimation algorithms on real-world data exploit non-parametric estimation based on particle filtering.en
dc.format.extent74 pagesen
dc.identifier10.26233/heallink.tuc.20591
dc.identifier.citationEmmanouil Alimpertis, "Smart sensors of RF and backscatter signals with localization", Master Thesis, School of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, 2014en
dc.identifier.citationΕμμανουήλ Αλιμπέρτης, "Smart sensors of RF and backscatter signals with localization", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2014el
dc.identifier.urihttps://dspace.library.tuc.gr/handle/123456789/1046
dc.language.isoen
dc.publisherΠολυτεχνείο Κρήτηςel
dc.publisherTechnical University of Creteen
dc.relation.replaces7001
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/en
dc.subjectSensor localizaiton with multiple emittersen
dc.subjectRF-tag localizationen
dc.subjectParticle filteringen
dc.subjectNon-parametric estimationen
dc.subjectCommunity RF sensingen
dc.subjectRF sourcesen
dc.subjectLocalizationen
dc.titleSmart sensors of RF and backscatter signals with localizationen
dc.typeΜεταπτυχιακή Διατριβήel
dc.typeMaster Thesisen
dcterms.mediatorTechnical University of Crete::School of Electronic and Computer Engineeringen
dcterms.mediatorΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστώνel
dspace.entity.typePublication

Αρχεία

Πρωτότυπος φάκελος/πακέτο

Τώρα δείχνει 1 - 1 από 1
Δεν υπάρχει διαθέσιμη μικρογραφία
Ονομα:
Alimpertis_Emmanouil_MSc_2014.pdf
Μέγεθος:
5.68 MB
Μορφότυπο:
Adobe Portable Document Format