Εργαστήριο Μικροεπεξεργαστών και Υλικού
Μόνιμο URI για αυτήν την κοινότηταhttps://dspace.library.tuc.gr/handle/123456789/53
Νέα
45
Περιηγούμαι
Πλοήγηση Εργαστήριο Μικροεπεξεργαστών και Υλικού ανά Θέμα "Artificial neural networks"
Τώρα δείχνει 1 - 1 από 1
- Αποτελέσματα ανά σελίδα
- Επιλογές ταξινόμησης
Δημοσίευση Επιτάχυνση προσομοίωσης δικτύου νευρώνων με χρήση αναδιατασσόμενης λογικής(Πολυτεχνείο Κρήτης, 2015) Kousanakis Emmanouil; Κουσανακης Εμμανουηλ; Dollas Apostolos; Δολλας Αποστολος; Pnevmatikatos Dionysios; Πνευματικατος ΔιονυσιοςΤα τελευταία χρόνια η ανάπτυξη βιολογικών νευρωνικών μοντέλων έχει κεντρίσει το ενδιαφέρον των ερευνητών. Στόχος είναι η κατανόηση σε μεγαλύτερο βαθμό της συμπεριφοράς του εγκεφάλου. Έτσι, δημιουργήθηκαν ποικίλα βιολογικά νευρωνικά μοντέλα τα οποία προσομοιώνουν με μεγάλη λεπτομέρεια τον τρόπο επεξεργασίας και διάδοσης της πληροφορίας σε δίκτυα νευρώνων, αλλά και μοντέλα τα οποία από την πλευρά της βιολογικής πιστότητας είναι αρκετά περιληπτικά. Η παρούσα διπλωματική εργασία στοχεύει στην επιτάχυνση προσομοίωσης ενός δικτύου νευρώνων, σύμφωνα με το απλοποιημένο υπολογιστικό μοντέλο των Hodgkin and Huxley ως ένα νευρωνικό δίκτυο 2 επιπέδων. Το μοντέλο που υλοποιήθηκε, προσεγγίστηκε διαφορετικά από παρόμοιες υλοποιήσεις σε hardware, καθώς η διασυνδεσιμότητα των νευρώνων αποθηκεύτηκε σε εξωτερική μνήμη. Έτσι, η αποτύπωση του συστήματος πραγματοποιήθηκε σε ένα υβριδικό υπέρ-υπολογιστή βασισμένο σε αναδιατασσόμενη λογική, ώστε να εκμεταλλευτούμε τόσο τα πλεονεκτήματα της αναδιατασσόμενής λογικής, όσο και το υψηλό εύρος ζώνης των ελεγκτών εξωτερικής μνήμης της υβριδικής πλατφόρμας. Πιο συγκεκριμένα, υλοποιήθηκε ένα δίκτυο από 70 νευρώνες, όπου ο καθένας αποτελείται από 64 δενδρίτες και κάθε δενδρίτης από 512 συνάψεις. Το δίκτυο που δημιουργείται κατά την σύνδεση των νευρώνων μεταξύ τους είναι μερικώς συνδεδεμένο και μεταδίδει πληροφορία όταν είναι εφικτό. Το σύστημα είναι ευέλικτο, αφού τα δεδομένα του μοντέλου, ο χρόνος προσομοίωσης και το εξωτερικό ερέθισμα, είναι αποθηκευμένα στην εξωτερική μνήμη δίνοντας έτσι τη δυνατότητα στο χρήστη να εκτελέσει διαφορετικών ειδών προσομοιώσεις. Τέλος, το αποτέλεσμα ήταν 35 φορές πιο γρήγορη εκτέλεση της προσομοίωσης του δικτύου νευρώνων που υλοποιήθηκε σε μία Virtex-6 LX760 FPGA, σε σχέση με παρόμοιες προσομοιώσεις που υλοποιήθηκαν σε Software και εκτελέστηκαν σε ένα σύστημα με επεξεργαστή 4 πυρήνων στα 3.10 GHz.