Practical calculation of non-gaussian multivariate moments in spatiotemporal BME analysis

Δεν υπάρχει διαθέσιμη μικρογραφία

Ημερομηνία

2001

Συγγραφείς

George Christakos
D.T. Hristopulos

Τίτλος Εφημερίδας

Περιοδικό ISSN

Τίτλος τόμου

Εκδότης

Kluwer Academic Publishers-Plenum Publishers

Περίληψη

During the past decade, the Bayesian maximum entropy (BME) approach has been used with considerable success in a variety of geostatistical applications, including the spatiotemporal analysis and estimation of multivariate distributions. In this work, we investigate methods for calculating the space/time moments of such distributions that occur in BME mapping applications, and we propose general expressions for non-Gaussian model densities based on Gaussian averages. Two explicit approximations for the covariance are derived, one based on leading-order perturbation analysis and the other on the diagrammatic method. The leading-order estimator is accurate only for weakly non-Gaussian densities. The diagrammatic estimator includes higher-order terms and is accurate for larger non-Gaussian deviations. We also formulate general expressions for Monte Carlo moment calculations including precision estimates. A numerical algorithm based on importance sampling is developed, which is computationally efficient for multivariate probability densities with a large number of points in space/time. We also investigate the BME moment problem, which consists in determining the general knowledge-based BME density from experimental measurements. In the case of multivariate densities, this problem requires solving a system of nonlinear integral equations. We refomulate the system of equations as an optimization problem, which we then solve numerically for a symmetric univariate pdf. Finally, we discuss theoretical and numerical issues related to multivariate BME solutions.

Περιγραφή

Λέξεις-κλειδιά

Παραπομπή

D.T. Hristopulos and G. Christakos," practical calculation of non-Gaussian multivariate moments in spatiotemporal BME analysis, Math. Geo.,vol. 33 ,no.5,pp. 543-568,2001.doi:10.1023/A:1011095428063

Έχει διάδοχο το τεκμήριο

Είναι διάδοχο του τεκμηρίου

Περιέχει το τεκμήριο

Είναι μέρος του τεκμηρίου

Αναφέρει το τεκμήριο

Αναφέρεται από το τεκμήριο

Έπεται το τεκμήριο

Προηγείται του τεκμηρίου

Έχει ως έκδοση το τεκμήριο

Αποτελεί έκδοση του τεκμηρίου

Έχει ως συμπληρωματικό το τεκμήριο

Είναι συμπληρωματικό του τεκμηρίου

Έχει μετατραπει στο τεκμήριο

Αποτελεί μετατροπή του τεκμηρίου